Raw R=0.4 signal, reference and $\Delta_{recoil}$ recoil jet distribution vs $\Delta\phi$ in $20 < p_{T,ch}^{reco,jet} < 30 GeV/c$ in pp collisions at $\sqrt{\it{s}} = 5.02$ TeV

Scope: PWG
PWG-JE (Jets)
Energy
5.02 TeV
System
Pb-Pb
Figure Image
Figure Caption

Raw R=0.4 signal, reference and $\Delta_{recoil}$ recoil jet distribution vs $\Delta\phi$ in $20 < p_{T,ch}^{reco,jet} < 30 GeV/c$  in pp collisions at $\sqrt{\it{s}} = 5.02$ TeV

$\Delta_\mathrm{recoil}$ is calculated as:

$\Delta_\mathrm{recoil} = \frac{1}{N^\mathrm{AA}_\mathrm{trig}} \frac{\mathrm{d^3}N^\mathrm{AA}_\mathrm{{jet}}}{\mathrm{d}p^{\mathrm{ch}}_\mathrm{T,jet} \mathrm{d}\Delta\varphi \mathrm{d}\eta_\mathrm{jet}} \bigg|_{p_\mathrm{T,trig} \in \mathrm{TT_{Sig}}} - c_\mathrm{ref} \cdot \frac{1}{N^\mathrm{AA}_\mathrm{trig}} \frac{\mathrm{d^3}N^\mathrm{AA}_\mathrm{{jet}}}{\mathrm{d}p^{\mathrm{ch}}_\mathrm{T,jet} \mathrm{d}\Delta\varphi \mathrm{d}\eta_\mathrm{jet}} \bigg|_{p_\mathrm{T,trig} \in \mathrm{TT_{Ref}}}$

Here $c_\mathrm{ref}$ is a scaling factor to account for conservation of jet density, and the trigger track intervals are in this analysis $TT_{Ref}: 5 <  p_\mathrm{T,trig} < 7$ GeV/c and $TT_{Sig}: 20 <  p_\mathrm{T,trig} < 50$ GeV/c. Jets are reconstructed with charged particles with $p_{T,track} > 0.15$ GeV/c, using the anti-$k_T$ algorithm with resolution parameter R=0.4.

Detail description

Raw R=0.4 signal, reference and $\Delta_{recoil}$ recoil jet distribution vs $\Delta\phi$ in $20 < p_{T,ch}^{reco,jet} < 30 GeV/c$  in pp collisions at $\sqrt{\it{s}} = 5.02$ TeV